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Abstract. The electrostatic resonant scattering of x-rays by an ion is discussed in terms of the
relevant part of the scattering length. A formula, which applies for both E1 and E2 absorption
events, is given for the product of matrix elements in the scattering length. The formula refers
to an intermediate state that is labelled by the full set of quantum numbers of the core state into
which a photon is absorbed. Idealized scattering lengths, discussed in our previous papers, are
obtained by eliminating one or both quantum numbers of the core state.

In three previous papers we have explored a theoretical framework for the resonant
contribution to the scattering length of x-rays,f . This quantity is the common factor
in calculations of the attenuation coefficient and scattering cross-sections. Using an atomic
model to describe electrons in a partly filled valence shell, we have demonstrated thatf

can be made to look the same as the scattering length of a direct probe of the valence
electrons, e.g. a beam of neutrons, at the expense of discarding some information inf on
the intermediate states engaged in the x-ray absorption event. The main advantage in using
such an idealized scattering length for the interpretation of x-ray empirical data is that it is
directly related to atomic quantities of interest, e.g. the spin–orbit interaction and magnetic
moment of the valence electrons. As we have just implied, in the idealized scattering
length the spectrum of intermediate states no longer obscures the information it contains on
properties of the valence electrons of the resonant ion.

In constructing an idealized resonant scattering length for x-rays, the mechanism for
discarding information on the spectrum of intermediate states is to perform a sum on the
product of matrix elements inf over the quantum numbers of the hole in the core state
into which a photon is absorbed. When this act is accompanied by the assumption that the
energies of the intermediate states are independent of the said quantum numbers, standard
tools in the theory of atomic spectroscopy enable one to carry out a significant simplification
of f . The main purpose of the present paper is to report a formula forf in which the
quantum numbers of the hole state are explicit, and not summed. As one might anticipate,
the formula in question is quite complicated. It is likely that the main use of the formula
will be in the interpretation of empirical data for which an idealized scattering length is
found to do an inadequate job. The idealized x ray scattering lengths, introduced in our
previous papers, are readily recovered from the more general formula given here.

In the following presentation we strive to make the key steps more or less self-contained.
However, for the application of the results to calculations of observable quantities and some
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necessary auxiliary quantities, like the combinations of polarization vectors, the reader is
referred to our previous papers.

The initial and final equilibrium (discrete) states of the valence electrons of the resonant
ion are labelled by quantum numbers{µ} and {µ′}. The quasi-discrete intermediate states
are labelled by{η}; they have energiesEη− 1

2iγη where(γ /h̄) is the total probability of all
possible processes by which an intermediate state can decay. It is convenient to define the
energy differences1 = Eη −Eµ and1′ = Eη −Eµ′ . If the primary x-rays have an energy
E = (h̄cq) = (2πh̄c/λ), the scattering length for a resonant process in whichE ∼ 1 is

fη = −
(

2πe

λ

)2(
1′

1

){
Z(µ;µ′)

E −1+ 1
2iγ

}
η

. (1)

In general, the matrix elementZ(µ;µ′) will depend on the position of the resonant ion
in the sample. Omitted in (1), for simplicity, are the Debye–Waller factor and the spatial
coherence factor; see Lovesey (1996). Formulae for the attenuation coefficient and cross-
sections for resonance-enhanced elastic and inelastic scattering expressed in terms off are
given by Lovesey and Balcar (1996).

The hole in the intermediate state is labelled by the quantum numbersJ̄ and M̄, and
J̄ = l̄ ± 1

2, where l̄ is the angular momentum of the core state into which a primary
photon is absorbed. We provide results forZ(µ;µ′) appropriate for electric dipole (E1)
and electric quadrupole (E2) absorption events. Let the polarization vectors of the primary
and secondary photons beε and ε′, and denote the dipole operator byR. If spherical
components are labelled byq = 0,±1, then, for an E1 event,

Zη(µ;µ′) ≡
∑
qq ′
(ε′qεq ′)

∗〈µ|Rq |η〉〈η|Rq ′ |µ′〉

= (l||C(1)||l̄)(l̄||C(1)||l)〈l|R|l̄〉2

×
∑
Km0

∑
r

(2K + 1)1/2(2r + 1)X(K)−m0
IK(r)m0

(−1)J̄−M̄
(
J̄ r J̄

−M̄ 0 M̄

)
. (2)

The quantityIK(r)m0
is defined after we give the corresponding result forZ(µ;µ′) calculated

for an E2 absorption event. In (2), forl̄ = (l − 1) the product of reduced matrix elements
of the spherical harmonicC(1) has the value−l, wherel is the angular momentum of the
valence shell. The tensorX(K) contains the polarization vectors and it is defined by Lovesey
and Balcar (1996).

For an E2 event,

Zη(µ;µ′) = 1
6(q
′/q){q〈l|R2|l̄〉(l||C(2)||l̄)}2

×
∑
Km0

∑
r

(2K + 1)1/2(2r + 1)(−1)KH(K)
−m0

IK(r)m0
(−1)J̄−M̄

(
J̄ r J̄

−M̄ 0 M̄

)
(3)

and H(K) is defined by Lovesey (1996). The ranges over which the integersK, m0 and r
in (2) and (3) are summed are determined by properties ofIK(r)m0

.
In our formula forIK(r)m0

we denote the atomic quantum numbersν, S, andL in µ by
θ , and thusµ representsθ , J andM. In the following expression,t = 1 (2) for an E1 (E2)
event. The definition ofIK(r)m0

is based on the function∑
qq ′

(
t K t

q −m0 q ′

)∑
M̄

(−1)J̄−M̄
(
J̄ r J̄

−M̄ 0 M̄

)
〈µ|Ctq(R̂)|η〉〈η|Ctq ′(R̂)|µ′〉
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and the only difference inI is that, purely for convenience, we factor out the reduced matrix
elements of the spherical harmonics. We obtain

IK(r)m0
= (2J̄ + 1)(−1)K

∑
x

(−1)x(2x + 1)1/2
(
K r x

−m0 0 m0

)∑
ab

〈µ|W(ab)x
m0
|µ′〉

× (2a + 1)(2b + 1)
∑
y

(2y + 1)

{
K r x

a b y

}{ t l l̄

t l l̄

K b y

}
1
2 J̄ l̄

1
2 J̄ l̄

a r y


(4)

where the unit tensor operator has a matrix element

〈µ|W(ab)x
m0
|µ′〉 = (−1)J−M

(
J x J ′

−M m0 M ′

)
(θJ ||W(ab)x ||θ ′J ′). (5)

Values of the reduced matrix element in (5) for atomic states determined by Hund’s rules
are listed by Lovesey and Balcar (1997). From a property of the 3j -symbol,m0 = M−M ′.
The 9j -symbols in (4) are zero unless(K + b+ y) and(a+ r + y) are even integers. With
our notation, which follows Judd (1963), the integersa andb denote the ranks of the spin
and orbital tensors inW(ab)x .

The quantity that features in our idealized scattering lengths is obtained fromIK(r)m0
by

settingr = 0. For example, Lovesey and Balcar (1997) use∑
M̄

〈µ|Ctq |η〉〈η|Ctq ′ |µ′〉

= (l||C(t)||l̄)(l̄||C(t)||l)(2J̄ + 1)1/2
∑
Km0

IK(0)m0
(2K + 1)

(
t K t

q −m0 q ′

)
. (6)

The idealized scattering length calculated using (6), and the assumption that the energies of
intermediate states are degenerate with respect toM̄, refers to an absorption edge labelled
by J̄ . An inferior estimate off is obtained if, in addition toM̄, one sums over the two
values ofJ̄ , and also extends the assumption about the energies of intermediate states to a
degeneracy with respect tōJ andM̄.

Turning to (4), one finds forr = 0 that x = K; then (6) tells us that the quantity
on the left-hand side, which determines the properties of the resonant scattering length, is
a simple sum of unit tensor operators. Hence, by discarding in the scattering length the
information labelled byM̄ one obtains a dramatic simplification. The idealized scattering
length so obtained has the same structure as the scattering length for the magnetic scattering
of neutrons.

Perhaps the simplest derivation of (4) comes by using an identity due to Innes and
Ufford (1958). More recently, a quantity similar toIK(r)m0

has been exploited by van der
Laan (1997a, b) to analyse the role of the spin polarization in the x-ray magnetic circular
dichroism spectra of itinerant magnets.

The sequence of steps that we have used to obtain (4) are as follows: the sums onq, q ′

andM̄ which entail four 3j -symbols, two of which have been made explicit and two more
which arise from applications of the Wigner–Eckart theorem to the matrix elements ofCtq
andCtq ′ , are reduced to a single sum, overx, of two 3j -symbols and one 9j -symbol by
using a result given by Rotenberget al (1959) equation (3.21)—one of the two 3j -symbols
created in this step is demanded by the Wigner–Eckart theorem as displayed in (5); the
9j -symbols created in step one multiplied by two 6j -symbols that arise from the reduced
matrix elements ofCtq andCtq ′ are expressed as a sum, overa, b and y, of the product
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of one 6j -symbol and three 9j -symbols using the identity due to Innes and Ufford (1958),
cf. Judd (1963) equation (3-28); the result obtained by steps one and two for a single hole
is extended to(2(2l + 1) − n) holes in the valence shellln by using the standard method
due to Racah (see Judd 1963), which leads to the appearance of unit tensor operators in the
final expression forIK(r)m0

.
It can be useful to separately consider the two contributions toIK(r)m0

labelled bya = 0
anda = 1. To this end, we define

A+ = { 12(2l̄ + 1− r)(2l̄ + 2+ r)}1/2/(2l̄ + 1)

and

A− = −{ 12(2l̄ − r)(2l̄ + 1+ r)}1/2/(2l̄ + 1).

For a = 0 andJ̄ = l̄ ± 1
2 we find

IK(r)m0
= ±(−1)rA±

∑
b

(2b + 1)

(
K r b

−m0 0 m0

)
〈µ|W(0b)b

m0
|µ′〉

{
t l l̄

t l l̄

K b r

}
. (7)

In consideringa = 1 it is convenient to use

α = {(2l̄ + 1+ r)/(2l̄ + 1− r)}1/2
and

β = {(2l̄ − r)/(2l̄ + 2+ r)}1/2.
Then,

IK(r)m0
= (−1)K

(
3

2r + 1

)1/2

A±
∑
x

(−1)x(2x + 1)1/2
(
K r x

−m0 0 m0

)∑
b

〈µ|W(1b)x
m0
|µ′〉

× (2b + 1)

[{
K r x

1 b r − 1

}{ t l l̄

t l l̄

K b r − 1

}
(r(2r − 1))1/2α±1

−
{
K r x

1 b r + 1

}{ t l l̄

t l l̄

K b r + 1

}
((r + 1)(2r + 3))1/2β±1

]
. (8)

Applied to calculations of the dichroic signals in the attenuation coefficient, equations (7)
and (8) provide generalizations of the standard sum rules.

Let us now summarize our key findings. In this exercise we will use as the example
the scattering length for an E1 absorption event. Our crudest estimate of the x-ray resonant
scattering length is obtained by summing the product of matrix elements inZη, given in
(2), on both of the quantum numbers of the core state,J̄ andM̄, that are contained in the
labelη. The effect on (2) of summing it on̄M is to set all terms in the sum overr equal to
zero except the term withr = 0. The effect on (2) of summing it on̄J is to seta = 0 in the
formula (4) for IK(r)m0

. In consequence, the idealized scattering length created by summing
on J̄ and M̄ is a sum of matrix elements ofW(0K)K

m0
with K = 0, 1 and 2. Note that the

circular dichroic absorption signal is proportional to the term in the scattering length with
K = 1 and is proportional to the total orbital angular momentum operator. This and other
properties of the idealized scattering length are explored by Lovesey and Balcar (1996).

A more sophisticated estimate of the scattering length is explored by Lovesey and Balcar
(1997). This form of the idealized scattering length is created by summing the product of
matrix elements in (2) only on̄M, leaving it as a function of̄J . From what has been said in
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the previous paragraph, the idealized scattering length in question is obtained from (2) by
settingr = 0, which means that it is a sum of the matrix elements ofW(ab)K

m0
with K = 0,

1 and 2. The new terms in the scattering length witha = 1 depend on the spin state of the
holes in the valence shell.

Lastly, Zη calculated with the full formula forIK(r)m0
gives our best estimate for the

resonant x-ray scattering length. An inspection of (4) shows that it is a nested sum of
matrix elements ofW(ab)x

m0
. Of course, of the three different estimates of the scattering

length that we have discussed, the one that uses the full formula forIK(r)m0
contains the most

information on the holes in the valence shell of the resonant ion.
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